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OPERATING CHARACTERISTICS FOR WEIGHTED

ENERGY DETECTOR WITH GAUSSIAN SIGNALS

INTRCDUCTION

The operating characteristics of an equi-weighted energy

detector for Gaussian signals in noise, in terms of false alarm

and detection probabilities, can be characterized mathematically

by a partial exponential expansion, and have previously been

numerically evaluated for arbitrary numbers of samples and

signal-to-noise ratios [1; (7) - (8) and figures 2 - 61.

However, when the weights employed in the energy detector are

unequal, or if the signal and noise powers on each sample are

unequal, these results do not apply and can be misleading,

especially when the number of samples summed is not large. Whot

is needed, in this case of arbitrary numbers of samples and

unequal weights or powers, is an exact approach in terms of the

characteristic function of the decision variable; this latter

function is frequently available in closed form and can be

employed in the fast efficient procedure presented in [21 and

utilized in [3,4,51 for direct accurcte evaluation of the

exceedance distribution function.

At the same time, it would be very useful to have accurate

approximations for the receiver operating characteristics, which

apply over the full range of applicable false alarm and detection

probabilities, yet are easily computed in terms of readily

available functions, or circumvent some of the more difficult
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numerical procedures required in the exact approach. Here, we

will consider four such approximations, namely Gaussian, chi-

square, constant plus chi-square, and generalized noncentral

chi-square, and demonstrate the range of applicability of each.

Thus, our goals here are two-fold

(1) determination of exact operating characteristics of

arbitrary weighted energy detectors along with working programs,

thereby allowing for investigation of other similar cases of

interest to the user; and

(2) construction of accurate simple approximations to the

operating characteristics, which can be extended to related

difficult problems and/or circ.umvent complicated numerical

procedures.

As a by-product, the inadequacy of some extant approximations

will be delineated quantitatively; in particular, the generally

optimistic results predicted by the Gaussian approximation will

be shown to prevail even when the number of independent samples

involved in the energy detector is very large.

2
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CHARACTERISTIC FUNCTION

We presume that we have M channels (or samples) containing

either noise-alone or signal-plus-noise, and that the random

variables in each channel are statistically independent of each

other. Specifically, for our interest, the output envelopes,

lem) for 1 < m < M, of M disjoint narrowband filters are

subjected to weighted square-law summation for purposes of

threshold comparison and a statement about signal presence or

absence on that particular observation of M outputs. The

decision variable in this case is

x M z
- Z Wm em - w u

ml m L m

where weights (Wmn) are all positive but otherwise arbitrary, and

the M squared-envelope outputs (Zm) are statistically independent

and identically distributed. An example is afforded by a finite-

rn-itime exponential summer where wm M A r _r 1, 1 < m < M.

Without loss of generality, the sum of the weights is set

equal to unity,

M
l-rwm W I that is, A 1- M (2)

Then, the mean of random variable x in (1) is equal to the mean

of each random variable Zm, because all the (zm) are identically

distributed. (If there are scaling differences in the variables

[Zm), these factors can be absorbed in modified scalings (W m),

3
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without loss of generality.) Under these assumptions, it should

be observed that the performance of the weighted energy detector

in (1) is independent of the ordering of the weights; thus, the

weights can be arranged in any order without affecting the

detection capability. Also, the absolute level of the [wiM)

cannot affect the operating characteristics of detector (1).

STATISTICS OF zm

For Gaussian signals and noises present at the inputs to the

M narrowband filters in (1), the probability density function of

each filter output envelope-squared random variable zm is

p (u) - 1exp for u > 0 , (3)

where parameter

( 1 for noise-alone

1 + R for signal-plus-noise

Here, we have normalized according to the noise power; that is,

the mean of random variable zm is set equal to 1 for noise-alone.

This presumption is equivalent to having knowledge of the average

noise level in the absence of signal and can be accomplished in

practice by monitoring the filter outputs over a sufficiently

long past interval of time. Also, R is the signal-to-noise power

ratio per sample at the output of each filter.

The characteristic function of each random variable z in (1)

is given by expectation (ensemble average)

4
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fZ(&) - E(exp(iEz)} - du exp(itu) pz(u) - 1 - i~a (5)

where we used (3). The cumulants Ixz (k)) of zm are immediately

available from (5) as

1 X (k) - ak for k > 1 . (6)

Actually, these are scaled cumulants, by the factor 1/(k-1)!;

they are more convenient and will ba employed henceforth.

CHARACTERISTIC FUNCTION OF OUTPUT x

The characteristic function of summation random variable x in

(1) is given by expectation

fx(E) - E(exp(i~x)) - , fzwm - [FT(i - i•wma)j (7)

where we used the 4:deperdence of the (zm and relation (5). The

(scaled) cumuli ' are available from (7) according to

h

(k-) x(k) M ak Zw a k Wk for k > 1 . (8)
rn-1

In particular, the mean and varlance of x are, upon use of (2),

S2x-X X(1) - a w1 -a, • 2 x?)• a w.. (9)

The desired closed form for the characteristic function of x is

given by (7), where the signa!-te--noise ratio parameter a is

given by (4). Result (7) applies for arbitrary M, weights (wiM),

and per-sample signal-to-n)isv ratio R.

5
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SOME RELATED RESULTS

Characteristic functions of the form of (7) occur in numerous

problems. For example, the stability of a spectral estimation

technique employing overlapped FFT processing of windowed data

encountered this form 16; (35) and (15)], where weights {wm}I were

proportional to the eigenvalues (Xml of a normalized covariance

function. Another example is furnished by diversity combination

in a channel subject to partially-correlated signal fading; see

[7; (D-14)], [8; (24)], and [9). In particular, the exact

characteristic function in [7) and [8] took the form

M '-D

it(62 + 2X)]D (10)

where (X m are the eigenvalues of a covariance matrix. Parameter

D was the order of diversity in [7], but was equal to 1 in [8).

GAUSSIAN APPROXIMATION TO EXCEEDANCE DISTRIBUTION

For the general characteristic function given by (7) and (4),

a Gaussian approximation to the probability density and

exceedance distribution functions is given in appendix A. It is

derived for arbitrary M, weights (Wm), and signal-to-noise ratio

R. However, its applicability to numerical evaluation of

receiver operating characteristics, in the form of detection

versus false alaLim probabilities, will be shown to be rather

limited in the next section.

6
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EXCEEDANCE DISTRIBUTION FOR ALL WEIGHTS EQUAL

In this section, the weights (wmn) in (1) and (2) are e.,ual:

1
Wm M - for 1 < min . (11)

The characteristic function in (7) then becomes

fx (t) -(1 - ita/M)-M. (12)

This corresponds to a multiple of a chi-squared random variate

with 2M degrees of freedom. The corresponding probability

density function is

% u M-1 ep-Ma
Px(u, - (1) exp(-ua/M) for u > C (13)

while the exceedance distribution function is, for u > 0,

Q (u) - f dt p (t) - exp(-uM/a) eM4 1 (UM/a) a EMI(uM/a) (14)

u

Here, e (x) is the partial exponential function [10; (6.5.11)],n

en(x) ( (15)

k-0

and we have defined auxiliary function

En (x) - exp(-x) en (x) for x > 0 . (16)

If threshold value T is used for comparison with output x of

the energy detector (1), then the false alarm probability PF is

7
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PF " Qx(T; a-1) - EM_1(TM) . (17)

Similarly, the detection probability PD is, from (14) and (4),

PD (T; a-l+R) - 1M_ TMR) . (18)

When T is eliminated between (17) and (18), the operating

characteristics (PD versus PF) can be plotted, with signal-to-

noise ratio R as a parameter. Separate plots are required for

different values of M, the number of envelope-squared samples.

GRAPHICAL RESULTS

The receiver operating characteristics (ROC) for

M - 1, 2,-4, 8, 16, 32, 64, 128, 256, 512, 1024 (19)

are plotted in figures 1 through 11, on normal probability paper,

for false alarm probabilities ranging from 1E-10 to .1 and for

detection probabilities ranging from .01 to .999. Signal-to-

noise ratios (in decibels) have been chosen, typically, to cover

PFPD possibilities from low-quality pair .01,.5 to high-quality

pairs in the neighborhood of 1E-10,.99.

Superposed in figure 3 (in dashed lines) is the Gaussian

approximation, for M - 4, to the exact exceedance distribution

function 0 in (14); see appendix A. Three selected values of

signal-to-noise ratio R are indicated, namely R - 4, 8, and 12

dB. They are identified by a black dot where they cross the

exact operating characteristic for the same signal-to-noise

8
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ratio. It is seen that the Gaussian approximation is virtually

useless at this low value of M, the number of samples.

This superposition, of three representative curves afforded

by the Gaussian approximation, is continued up through M - 1024

in figure 11. Again, agreement with the exact results is

generally quite poor. Even at M - 1024, the required signal-to-

noise ratio from the Gaussian approximation for P F . 1E-10,

PD = .3, for example, is in error by .3 dB.

Furthermore, it should be observed that the Gaussian

approximation is always optimistic in the useful range of the

operating characteristics; this bias is misleading in

quantitative performance predictions applied to practical

detection systems. Additionally, the case in this section,

namely equal weights, is the most favorable situation for the

Gaussian approximation to apply in; any other distribution of

weight values makes the effective number of weights (Me in (A-6)

and sequel) less than M, thereby deviating even further from an

accurate application of the central limit theorem. The message

to be conveyed here is that the performance capability of energy

detectors for Gaussian signals and noises should be based on

something other than the Gaussian approximation.

9
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EXCEEDANCE DISTRIBUTION FOR ALL WEIGHTS DIFFERENT

In this section, we confine attention to the case where all

the weights {WmnI are different from eauh other; that is,

wm * wk if m # k ; wm > 0 (20)

Then, we expand the characteriitic function of x in (7) in a

partial fraction expansion according to

f - 1 - i•wma) - - a ' (21)

where coefficients

H-1

B m for 1 < m < H , (22)
m H

(w - Wk)
k-1
kim

depend only on weights (wm) and not on signal-to-noise ratio R.

The probability density function of x is then immediately

available from (21) as

M

Px(u) - Am B m exp(-Amu) for u > 0 , (23)
M-i

where Am - 1/(Wma). The corresponding exceedance distribution is

a M

Qx(U) - dt Px(t) E 5Bm exp(-Amu) for u 0 (24)

u M-i

21
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If threshold T is used as the basis of comparison for output

x of the weighted energy detector in (1), the false alarm and

detection probabilities follow from (24), respectively, as

P Qx (T; a - 1) , P (T; a - 1 + R) (25)

As an example, if M - 1, then w1 - 1, A1 - 1/a, B1 - 1, and

(24) .yields Qx(u) - exp(-u/a) for u > 0. Then, (25) gives

1

- exp(-T) , PD exp(j+j) a P - exp I+R J" (26)

For this special case of M - 1, threshold T can be eliminated and

PD expressed explicitly in terms of P F and R.

GRAPHICAL RESULTS

The particular case of unequal weights that we shall

concentrate on here is a set of exponential weights

wm - A rm- for 1 < m < M , r < 1 , (27)

where scale factor A is selected for normalization of the

weights, according to (2). Of course, the absolute level of the

weights does not affect the operating characteristics.

In figure 12, the ROC for M - 4 and r - .99 is plotted, as

determined from (25) and (24). Since r is close to 1 for this

example, the weights (27) are all nearly equal, causing some of

the coefficients IBM) in (22) to be rather large, in the range of

±.5E6. This leads to round-off error in sum (24) for the

22
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exceedance distribution function and the possibility of useless

numerical results; however, because M - 4 is a small number, the

round-off error does not yet show up in figure 12.

When M is increased to 8 in figure 13 and r is kept at .99,

coefficients (Ba} in (22) reach values in the range of ±.7E12,

and round-off error begins to show up as wiggly lines in the

higher detecticn probability values near .999. We are using a

computer with 64 bits per word, which yields approximately 15

decimals of accuracy for the mantissa. Although coefficients

{Bm) can be calculated very accurately from (22), they alternate

in sign and can be very large. Then Q in (24) requires

differencing of large numbers, with an attendant possibly

damaging loss of accuracy, especially for small PF"

When M is increased by one, to 9 in figure 14, and r is

maintained at .99, round-off error is now significant at the

upper edge of the ROC, although useful characteristics are still

available for lower values of PD" The reason for this problem is

that all the weights are close to each other; in fact, the M-th

weight is rM- - .923 times as large as the first weight. The

largest coefficient values for iBm) are in the range of ±.16E14.

When the weights are spread out over a wider range, larger

values of M can be tolerated in sum (24), without encountering

signiticant round-off error. For example, a set of M- 16

uniformly distributed random weights, over the (0,1) interval,

were utilized in figure 15 without any problems. But when M was

increased to 20 in figure 16, again for uniformly distributed

23
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weights, the upper edge of the ROC, for PD > .99, was useless.

Nevertheless, a significant portion of the ROC for lower PD

values is still acceptable.

The lesson to be drawn from these results is that the partial

fraction expansion, leading to the exceedance distribution

function in (24), has u:tility for spread out weights (wmI and

moderately low values of 14, the number of envelope-squared

samples. However, it will not be a viable tool for large values

of M, nor for general weight structures which may have some close

or equal values. The more general approach presented in [2], in

trms of an arbitrary characteristic function, has no such

limitations, on the other hand, although the numerical

calculations required are more extensive.
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CHI-SQUARED APPROXIMATION FOR ARBITRARY WEIGHTS

The difficulty of evaluating the ROC from exact character-

istic functions of the form of (7) and (10) has prompted the use

of approximations that attempt to extract an effective number of

independent samples from a general weight structure, and use this

parameter in a simpler chi-squared fit. For example, in

[6; (38) and sequel], such an approximation was fruitfully

employed to study the stability of a spectral analysis technique

employing equi-weighted overlapped segments. Also, in

19; (A-24) - (A-28)), a chi-squared approximation was adopted for

the analysis of a diversity combiner in a partially-correlated

fading channel. However, in this latter case, no quantitative

measure of the error in the approximation was given.

PARAMETERS OF APPROXIMATION

Here, we will address the adequacy of the chi-squared

approximation for a general exponential weight structure of the

form of (27). We begin by generalizing the chi-squared

characteristic function in (12) to the candidate form

-M
f e() n (1 - iw a) e (28)

where we is an effective weight and Me is an effective number of

envelope-squared samples, which may be noninteger. (The number

of degrees of freedom in (28) is 2 Me.) The corresponding

probability density and exceedance distribution functions are
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(u -exp(Wea
pe(u) - (wa)Me for u > 0

r(me) (w ea)

Qe(u) - r(Me, !Ai(MeMe) for u > 0 (29)

respectively, where r(.,.) is the incomplete gamma function

110; 6.5.3]. These results generalize (13) and (14). The

(scaled) cumulants of this gamma distribution follow from (28) as

I k
(k-l)! Xe(k) 141e (wea) for k > 1 (30)

The mean and variance of this approximation are therefore

Me we a and Me we a ,respectively.

When we equate these first two moments of the generalized

chi-squared approximation (28) to the first two moments of

decision variable x in (9) and (8), we find

wW 
Wm)

2

-- 2 , - 1 - (31)
We W e W2 M(31

Wmu

For example, if all the weig-ts are equal, then Me M. On the

other hand, if all the weights are zero except for one, then

Me n I. Both of these limiting cases obviously agree with

physical intuition. Observe that we and Me are independent of

parameter a or R, the signal-to-noise ratio.

For the exponential weight structure in (27), the effective

number of weights and the effective weight are
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1+ r 1- r 1
M - r r - for W1  1 . (32)

it should be noted that as M 4 =, effective number Me saturates

at value (1 + r)/(1 - r), which is not infinite.

Since the incomplete gamma function in (29) is tedious to

compute for me noninteger, performance could be bracketed by the

two :ases Mi, Mi+l, where Mi is the integer part of Me. Or

interpolation could be used between these two cases. Instead, we

shall choose examples for which Me is an integer; this allows us

to use a form like (14), which is easily computed upon

replacement of M by Me.

GRAPHICAL RESULTS

The first example of the use of a chi-squared approximation,

"for the exponential weight structure in (27), is furnished by

figure 17 for M - 5, r - .69308907; this particular r value is

chosen to yield Me - 4, as.may be verified from (32). The exact

results (solid lines) in this figure were obtained by the method

of the previous section, namely, all weights different. The

three dashed curves are yielded by the chi-squared approximation

of this section, with Me - 4; the latter are seen to be

optimistic by almost I dB along the left edge of the figure.

When M is increased to 25 and r decreased to .60000182, again

resulting in Me - 4, figure 18 shows that the chi-squared

approximation is far worse. The reason for this behavior ib -nat
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25 significantly different weights cannot be well represented by

4 equal weights in terms of evaluating the detection capability

of the energy detector (1).

The series of plots in figures 19, 20, 21, 22, 23 correspond,

respectively, to Me - 8, 16, 32, 64, 128, for various

combinations of M and r, as indicated on the figures. Again, the

chi-squared approximation is generally optimistic in the useful

range of performance. For M - 64 in figure 20, the discrepancy

is almost 1 dB along the left edge. However, for large M, like

200 in figure 23, the difference is only about .25 dB along the

left edge.

The results in figures 21, 22, 23 for Me - 32, 64, 128,

respectively, were not obtainable from the all-weights-different

method of the previcus section, due to excessively lVrge

coefficients (Bm) in (22). Instead, it was necessary to resort

to the numerical integration procedire given in [2]; the values

of increment a& and length L& appropriate to each case are

indicated on each figure.

A conclusion to be drawn from the results in this section is

that, although the chi-squared approximation is much better than

the Gaussian approximation, it is still not adequate for accurate

performance predictions within a few tenths of a decibel. The

chi-squared approximation is generally unacceptable for small Mev

unless r is very close to 1. And for large Me, it is acceptable

in some regions of the ROC, but not in others, especially if the

M-1extreme weight ratio, r - is very small.
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THIRD-ORDER APPROXIMATION FOR ARBITRARY WEIGHTS

When a constant c is added to a random variable, the

characteristic function is modified by multiplication by the

factor exp(ict). Accordingly, a further generalization of the

chi-squared characteristic function in (28) is afforded by

exp(i~b Ca) )
feC(&) xM b exp iMbca - Mc ln(l - i•wca) a (33)

(I - ikwca) c -

This form now has three parameters to choose, namely wc, bc, and

effective number of samples Mc. This is in distinction to the

chi-squared approximation (28) and the Gaussian approximation

(A-2), both of which had only two free parameters to adjust.

Thus, whereas we only matched the first two moments in (30) and

(A-3), respectively, to those of decision variable x, we can now

match the first three moments of x if we use characteristic

function model (33).

The cumulants of characteristic function (33) are

Xc(1) - Mc wc a + bc a ,

SXc(k) - M (wc a)k for k > 2 (34)(k-1) ck =S

When the first three cumulants (or moments) of (34) are equated

with the corresponding quantities of decision variable x, as

given by (8), the unique solutions for the parameters of (33) are

H - 2 w - 3  b =W 2(5
c 2' C W' 2 1 W3
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where

M

Wku w k (36)Wk .wm•

M-I

It should be noted that the parameters in (35) are independent of

parameter a or R, the signal-to-noise ratio.

The probability density function corresponding to

characteristic function (33) is

(u - bca) 1 exp- u+c a)

Pc(u) - - for u > b a, (37)
.r(mc~) (WCa )

and zero otherwise. The exceedance (gamma) distribution function

is an obvious generalization of (29), or (14) if Mc is integer;

see [10; 6.5.3, 6.5.2, 6.5.131.

QC(u) - r M(m • wac) /r(Mc) W EMlC1( wac) for u > bca . (38)

For threshold value T, the false alarm and detection

probabilities follow immediately as

P F = (T -bc P. EMCl( w ) (39)

provided that T > b a.
c
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EXPONENTIAL WEIGHTS

We now restrict attention to the exponential weight structure

1- r rM-1 for 1 < m < H , with t a rM (40),.W " 1 - t_ _, 4 )

where we have normalized at W1 - 1. Then, from (36).,

1 r 1tkk r1 -i k- 1 1 + t +t. + 2 ' + tk-1
k LVI=-- I U -t2 . +ki (41)r) -1 1+rG. 24r

i -Gi k )+ r + + r .. + r

In particular,

Wi , W2  3 ( r 2  t + t2  (42)" 2" 1 -t 1 + r 3 G- =t) 1+ r + r2

The parameters in (35) then follow by substitution as

(1 - r3) 2 (1 t2)33  1 t i(31 + r+ r 2 ] 2
"(1 - r2)3 (1 - t3)"2 Z- + Ft + t2 + t

w 1- r 2 1 + t + t2; bc (1 - r t_ _ - t)(44)
wc - T2 2+ r i+ 2 (1 + t + t2)

1 r+r(1. + r) 2(..~ 2

For equal weights, wm - 1/N, we Tet the usual reduction to

W1 - 1, W2 - 1/M, W3 - 1/H , giving Mc - M, - l/M, bc - 0.
Furthermore, it is shown in appendix B that additive constant bc

in (33) and (37), as determined from (35) and (36), is never

negative, for AU. nonnegative weight structure (w.1.
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GRAPHICAL RESULTS

The first example we consider here is M - 25, r - .75049209,

for which (43) gives Mc - 4; again, the reason for the particular

choice of r is made so that Mc is integer and (39) can be used.

The approximation afforded by (39) is superposed (dashed lines)

in figure 24 on the exact results (solid lines) obtained from

(25). Increasing M to 64 and changing r to .75049170, so that Mc

is maintained at 4, generates virtually the same approximation.

The fit is poor and rather optimistic at the left edge of the

figure, due to the small value of M , namely 4.

For M - 50 and r - .96915298, M is increased to 32 and the

results are compared in figure 25. Now, the fit afforded by the

constant plus chi-squared approximation is rather good over the

entire range of false alarm and detection probabilities shown; in

fact, the approximation is optimistic by about .1 dB on the left

edge of the figure. The reason for this development is the

larger value of the effective number of samples, Mc , namely 32.

Two more results, for Mc equal to 64 and 128, yield similar

conclusions in figures 26 and 27, respectively. Again, the

exponential weight structure was employed. However, the goodness

of fit of the constant plus chi-squared approximation is not

limited to this type of weights, but in fact applies to arbitrary

structures. To back up this statement, an example of uniformly

distributed random weights for M - 133 and Mc a 77.971 is

displayed in figure 28; the overlay, which used Mc M 78 in

approximation (39), is seen to be very good for this value of M .
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APPLICATION TO EIGENVALUE PROBLEM

Earlier, in (10) and (8; (24)], a particular characteristic

function was given which has occurred in a number of statistical

analyses. That characteristic function, in normalized form, is

M ' -1

-xV Ff - i 1+ R Xm)1 (45)

where R is the per-sample signal-to-noise ratio and (X,) are the

eigenvalues of the normalized covariance matrix P of the fading

signal components. By expanding the ln of (45) in a power

series in it, the cumulants of random variable x are found to be

M M k
1 Xmk n n(k-l)! Xx(k) - L(l + R S1m)k

mini1) xu n.

~M + L(k) Rn tr (pn) for k >Ž1 (46)
n-il

where we have used the simplifying result in appendix C regarding

sums of powers of eigenvalues. In particular, there follows

from (46), the first three cumrulants of x in terms of tr(pn):

Xx(l) - M + R tr(P)

Xx(2) - M + 2R tr(P) + R2 tr(P2

Xx(3) - K + 3R tr(P) + 3R tr(P 2) + R tr(P (47)

53



TR 8753

PARAMETERS FOR CANDIDATE APPROXIMATION

In this section, we will approximate exact characteristic

function (45) by the form employing the constant plus chi-squared

idea again, namely

exp(itbd)
f MM exp •ibd Kd ln(l - i•Wd). (48)

(1 - itwd)

The cumulants are given by a form very similar to (34), and in

particular, the first three (scaled) cumulants of characteristic

function (48) are

2 1
Xd(l) Md wd + bd , Xd( 2 ) - Md w , Vd13) - Md d49)

If the first three cumulants, Xd(k) for k-1,2,3, were specified,

we could then solve (49) for the required parameters according to

X3(2) Xd (3)/2 X2(2)

( -dxd(3)/2) Id b- Xd(1) Xd( T (50)d 2 d X ) M ' -X Xd( 3)/2

Now, we set the cumulants of approximation (48) equal to the

exact cumulants given by (47), and then solve (50) for the

required parameter values. Then, approximation (48) to exact

chacacteristic function (45) is available for numerical

evaluation. If cum'ulants (xx (k)) for k-1,2,3 can be evaluated

either analytically (via eigenvalues ({m) in (46) or by the trace

relations in 447t)) or numerically (estimated via finite time

aver3ges), then the parameters in (50) can be determined and the

corresponding ROC found.
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EXACT PERFORMANCE OF (45)

If signal-to-noise ratio R - 0 in (45), then

fX() - (1 - iE)-M and there follows, in a manner similar to

(14), Ox(u) - EMl(u) and PF a EM- 1 (T) for threshold T.

If R > 0 and all the eigenvalues {Xm) in (45) are distinct,

then, in a manner similar to (21), we can express

SB m(R)fx( ) u . ) 'T (51)
r-i 1 - it 1 + R X 

(m

where coefficients

B(R)( for 1 < m < M (52)

RM- 1(X - Xk)
k-l
k m

The exceedance distribution function is then

M

Qx(U) - Bm(R) exp ) for u > 0 R > 0 (53)

and the detection probability is

M

P"- ZBi(R) exp( - T ) for T > 0, R > 0. (54)
rn- U XM

The eigenvalues [X m of normalized covariance matrix P are

independent of signal-to-noise ratio R; however, coefficients

(Bm(R)) are dependent on R and explicitly indicated so.
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GRAPHICAL RESULTS

The only example that we consider here is a covariance matrix

- (mn 1 , where P p - In particular, for M - 10 and

p - .5, the M eigenvalues {X m of P were evaluated and the

results on page 55 were used for an exact evaluation of the

detection and false alarm probabilities; these are displayed as

solid lines in figure 29.

Then, we returned to matrix P, ignored the knowledge of the

eigenvalues, and instead employed the trace relations in (47) and

appendix C to evaluate the cumulants of random variable x. These

were substituted in (50) to determine the parameters of

characteristic function (48), as explained in the sequel to (50).

Then, the method of [23 was used to obtain the corresponding ROC.

These results are overlaid as dashed lines in figure 29, for

three selected values of signal-to-noise ratio R (in decibels).

The agreement for small signal-to-noise ratios is very good, and

can be explained by observing that (45) approaches the chi-

squared characteristic function in this case. Approximation (48)

is also excellent for very small false alarm probabilities,

despite the fact that the equivalent number of samples, Md' is

rather small; for example, the three curves in figure 29 for

R - 2,5,8 dB have Md - 5.79, 4.83, 4.31, respectively..

Another example for M - 32, p - .5 is displayed in figure 30.

Here, the values of Md for the four overlays, R - -2,0,2,4 dB are

24.1, 20.6, 17.6, 15.4, respectively. These larger values of Md

account for the improved fit to the exact results.
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FOURTH-ORDER APPROXIMATIONS FOR ARBITRARY WEIGHTS

In this section, we will consider a couple of fourth-order

fits to a specified characteristic function and will match

cumulants (or moments) through fourth-order.

GAUSSIAN PLUS CHI-SQUARED FIT

The initial fourth-order fit of interest here corresponds to

the characteristic function of a (nonzero mean) Gaussian random

variable plus a chi-squared variate. That is, the candidate is

f exp(ibf - cf) - exp(iubf - 1 2 c - Mf ln(l - i.wf))

(i- iwf) f

The first four cumulants of characteristic function (55) are

2
Xf(1) - bf + Hf Wf Xf(2) - cf + Mf Wf ,

½Xf( 3 ) - Hf wM 3 1Xf( 4 ) - Mf wf . (56)

If the cumulants are specified, the parameters for

characteristic function (55) can be determined explicitly as

H (xf(3/2) 4  Xf( 4 )/ 6

(Xf(4)/6 )3 ' w Xf(31/2

Xf(3)//2) 3  (Xf(3)/2) 2

bf- ×X(l) (xf(4)/6) 2 ; Cf X- xf( 2 ) - Xf. 4 )/ 6  (57)

Numerical results will be presented in a later section.
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NON-CENTRAL CHI-SQUARED FIT

The other fourth-order fit that we consider corresponds to a

generalized non-central chi-squared variate, namely

characteristic function

ex-/ /1 - i €c itbgf (•} eP -* - exp Mg ln(l - iEwg) . (58)

This is called generalized because we do not force cg - Wg

The In of (58) can be expanded in a power series in i&:

+W +4D

ln f (E) - ibg (itc )j + Mg 1(iwg .

J-0 k-l

The first four cumulants of this characteristic function are then

Xg(i) - bg + Mg Wg Xg(2 ) - 2 bg cg + Mg w2
9 g g

1Xg(3) - 3 bg cg2 + Mg w3 , Xg(4)- 4 bg c0 +M w4 . (60)

The inverbion of these nonlinear equations, for the parameters in

terms of the cumulants, is not possible in closed form, as it was

for candidate characteristic function (55). This limitation

tends to discourage use of the non-central chi-squared

approximation (58). However, in appendix D, an efficient

numerical procedure for solving (60) for the required parameters

is developed and programmed. Application of this approximation

procedure is deferred to a later section.
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PERFORMANCE IN STEADY STATE NOISE

Up to this point, the number of samples, M, has been finite,

both for signal-present as well as signal-absent; then, the noise

output of the exponential integrator, (27) or (40), has not

reached steady-state. In this section, the number M of noise

samples will be set equal to -, thereby allowing the integrator

noise output to reach steady state. However, the number, N, of

samples containing signal (if present) will remain finite.

This situation arises in practice, for example, when the

precise arrival time of the signal is unknown. The use of

surplus envelope-squared samples {Zm), for m > N, does not

improve performance, since these particular samples are always

noise-only; in fact, these extra samples always degrade

performance, the exact amount depending on the relative sizes of

weights (w m for m > N compared to m < N. Here, we will give a

method for quantitatively assessing the impact of these surplus

noise-only samples on the operating charactcristics.
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CHARACTERISTIC FUNCTION

The characteristic function of the decision variable is an

obvious generalization of (7) to the form

-l

f~ M 1 ,~ m (61)

where the signal-to-noise ratio parameter am now takes the. form

( 1 for noise-alone
a~ m 1 + R for signal-plus-noise1  for 1 < m < M (62)

m

The particular case that will be considered at length, here, is

that of a finite-duration constant-strength signal, which is

accommodated mathematically by setting

Rm ( f 163)
0 for N < m M-

When signal-to-noise ratio R is equal to zero, that is,

signal-absent, the characteristic function in (61) reduces to

.-l

Ux() x 1- (64)

Unfortunately, even for the exponential averager,

Wm M(l-r) rm-1 for 1 < m < M - , (65)

the noise-only characteristic function in (64) takes a form,
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{F 1 - i&~ (1-r)0 (66)

which is not expressible in closed focm; see [11; (89.18.3)1.

(Likewise, the finite product cannot be simplified; see

[i1; (89.16.2)1.) This necessitates termination of the infinite

product in (66), being sure 'to keep the remainder below an

acceptable tolerance; this issue i': addressed in appendix E.

CUMULANTS

For general characteristic function (61), the cumulants are

____ k

(k-i)! Xx(k) - (W am)k for 1 < k (67)
m-1

For the special case of the exponential averager (65) and the

finite-duration signal (63), these cumulants reduce to

(k-I), Xx(k) r)- ( k (1 + R) k - rkN + r . (68)

At the same time, characteristic function (61) becomes

f%-'& Vf(1 i& (1-0) rml (1 + R) ) f7(i - i& (1-0) r! )]

m-N+l

(69)
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In particular, for noise-alone, then R - 0 and (68) reduces

to

i X (k) (1 - r) k (11) k-1 (70)
(k-1)! Xx r -k I + r + ... + rk-l

The three lowest-order cases are

i (1) - 1 , •x(2) 1 - r 1- (• (1 - r) 2

"x X1 + r ' + 2  (71)

For signal-present, R > 0, the three lowest cumulants are,

from (68),

Xx(l) -1 + R R rN

(2) - r[(1 + R) 2 (l _ r 2 N) + r 2 N]

~X (3) -(1-r)- 2 (1 + R) 3 (l - r 3N) + r 3N] (72)"1 + r+ r

Here, N is the number of signal components, R is the signal-to-

noise ratio per sample, and r is the exponential decay factor for

the weight structure (65).

In the evaluation of the signal-present characteristic

function (69), the second product will have to be terminated at a

finite limit m - L (> N). The error due to this truncation is

addressed in appendix E.
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GRAPHICAL RESULTS

An example of the results in this section for M = •, N - 32,

r - .9, is displayed in figure 31,.as obtained via exact results

(66) and (69), along with the truncation procedure of appendix E.

Superposed as dashed lines are the results of using the constant

plus chi-squared approximation (48), where the parameters are

ol ained from the cumulants, according to (50). The cumulants

themselves are given by (72). The effective number of samples,

Nd in (48), takes on the values 10.680, 10.676, 10.673, and

10.672 for the four signal-to-noise ratios of 0, 2, 4, and 6 dB

indicated in the figure. This relatively small value of Md is

the reason for the discrepancy in figure 31 between the exact and

approximate results.

Figure 32 is drawn for M - *, N - 50, and r - .96915298;

compare figure 25, for which Mc - 32. The values of Md for the

three overlaid curves for signal-to-noise ratios equal to -2, 0,

and 2 dB are 33.531, 33.030, and 32.624, respectively. These

larger values, for the effective number of samples, lead to

better agreement in this figure; in fact, the approximation is in

error by only .15 dB along the left edge of the figure.
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BLOCK EXPONENTIAL WEIGHTING

In this section, we again consider a weighted energy detector

in steady state, that is, M - o. However, the averager now

operates on blocks of data points which are equally weighted, but

which are themselves exponentially weighted. That is, the

decision variable x is now given by
a•

xwn zm ,(73)
rn-1

where the weights (Wm) are

I for 1 <m < B,

1-rr for B < m < 2B- -- •1 (74)wm2 fo

Sfor 2B < m < 3B

Here, B is the block size and the weights have been normalized

at W - 1. The following diagram illustrates the block

exponential weighting structure.

B 1
Y_-r Wm

r

2
r..
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SIGNAL STATISTICS

The signal, if present, occupies the first N samples of sum

(73), where

j .(75)B

is presumed integer; that is, 3 is the number of blocks occupied

by signal (when present). The signal-to-noise ratio parameter is

1 for noise-only

a+R for signal plus noise for 1 m N (76A)

and

am - I for N S m < . (76B)

CHARACTERISTIC FUNCTION

The characteristic function of x in (73) for signal present

is, using the independence of the {Zm},

Jx(&i (1 - i-w maM)]

-1 - 1 r! (1 + R) 1 -( (77) -
j-J

Again, an infinite product is required and the truncation

procedure given in appendix E is directly relevant.
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CUMULANTS

The cumulants of decision variable x follow readily from

(77), upon expansion of in f(M in a power series in it:

1[(1-r)/B1k-1 ik ) ]

lkr+ X.k k ..+ l [1+R)(1-rk + rkJ for k > 1. (78)

The four lowest-order cumulants will be used in fitting the exact

characteristic function (77) by approximations (55) and %58).

GRAPHICAL RESULTS

Results for the operating characteristics for B - 4, J - 32,

and r - .95 are presented in figure 33. Thus, from (75), the

signal (when present) occurs on N - 128 samples. Superposed as

dashed lines is the approximation afforded by third-order fit

(33) and (39). The discrepancy is only .1 dB along the left edge

of the figure.

Another example of block exponential weighting, for B - 4,

3 - 16, and r - .9, is displayed in figure 34. The dashed

overlay is again the third-order approximation (33), which is

optimistic by about .15 dB along the left edge of the figure.

The exact results from figure 34 are repeated in figure 35,

but now the overlays are the two fourth-ciu r approximations (55)

and (58). The latter two adproximationn aru indistinguishable

from each other over the entire range of r •,babilities displayed.

Furthermore, they differ from the exact results only by .05 dB at

the left edge of the figure.
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SUMMARY

The receiver operating characteristics of a variety of

weighted energy detectors, for Gaussian signals in noise, have

been investigated exactly and compared with five different

approximate procedures. The Gaussian and chi-squared

approximations have been found to be generally inadequate for

very small false alarm probabilities, while the generalized

chi-squared (gamma) and both fourth-order fits have yielded very

good results over the entire range of detection and false alarm

probabilities considered. The only limitation of the latter

approaches is the need to have additional cumulants (or moments),

since the first two cumulants are not always entirely adequate

for accurate performance predictions.

If the exact characteristic function for the decision

variable of a system can be determined, either analytically or

numerically, then the receiver operating characteristics can be

accurately evaluated by the method of [2], as done here.

However, there are occasions where it may be desirable or

imperative to use an approximate characteristic function, as for

example, when only a few low-order moments are known. In this

fashion, we can, for example, avoid the determination of

eigenvalues or avoid the evaluation of infinite products. Also,

the approximate forms will frequently be faster to compute than

the exact results. This report indicates the relative accuracies

inherent in some of the standard approximations and some of their

generalizations, which should be considered for future use.
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APPENDIX A - GAUSSIAN APPROXIMATION

The characteristic function of interest was presented in (7):

fx(t) - E(exp(lix)l - 1F fz(Wmt) - 1(i - itwma a) (A-i)

where (wm), for 1 < m < N, are an arbitrary set of weights. The

mean and variance of random variable x were given in (9).

Now, if energy detector output x in (1) were a Gaussian

random variable, its probability density function would be

((u - '
p(u) I p for all u ,(A-2)

g (2n) a % 2a

where, from (9) and (4), we set

tlor t 2or . (A-3)
1 + R (1 + R)2 W 2

The exceedance distribution function corresponding to (A-2) is

Qg(u) - J dt p9 (t) - 0 for all u , (A-4)
u

where

t
a v (n-4 2(A)
I dv (2n) exp(-v /2) (A-5)

is the normalized Gaussian cumulative distribution function.
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At this point, it is convenient to define an effective number

of samples, Me, for an arbitrary set of weights (wV} as in (31)

M M ) - - (A-6)e M 2 92 'r2

Here, we used (8) and (2).

If threshold T is utilized for a comparison with energy

detector output x for a decision oi, signal presence or absence,

then the approximate false alarm probability follows from (A-4):

P Qg(T; R-0) - #(M (l-T)) * (A-7)

with the help of (A-3) and (A-6). Similarly, the approximate

detection probability is

P 0D Q (T; R*O) - # (M (l - r- . (A-8)

Equations (A-7) and (A-8) produce the Gaussian approximation to

the operating characteristics of the energy detector (i),

described by characteristic function (A-1). They depend only on

the single parameter Me defined in (A-6), in addition to the per-

sample signal-to-noise ratio R. That is, M and (wm) are all

collapsed into the single parameter, effective number Me.

An immediate obvious problem with (A-8) is that the limit of

detection probability P D as R 4 o, is not 1; in fact, it is

#(M4 < . This drawback serves as a warning about the adequacy

of the Gaussian approximation.
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For the approximations in (A-7) and (A-8), we can explicitly

solve for PD in terms of PF' as follows. Let # be the inverse

function to 9; see [10; 26.2.23). Then (A-7) can be solved for

threshold T according to

T - 1(PF) (A-9)

Substitution of this result into (A-8) yields

P" . (A-10)

It now follows immediately from (A-10) that, for specified PF

and PD' the requird signal-to-noise ratio R is

R- D- F (A-1)
M½D
e

where

F (PF) D 0 .(PD) . (A-12)

The result in (A-11) is a generalization of [1; (C-8) and (11)]

to the case of arbitrary weights (wiM). It is immediately obvious

from the denominator of (A-11) that the desired PD must be

svaller than # M11.
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APPENDIX B - POSITIVITY OF PARAMETER bc

Here, we will show that the parameter bc in (35) is never

negative, regardless of the weight structure {wM}, provided that

m > 0. The Cauchy-Schwartz inequality states that

a b amab2 b 2 (B-i)m bm . am m

muJ -I -m1i

for any real quantities (am) and (b a. If we let am - W 3 2 and

bm - wa1/2, then (B-i) yields

M w)2] <N w 3 Z wm (B-2)-- T m E

m-I -i rn-i

that is, W 2 W W1, where2 < 3  1

Mv-' k
Wk x L w k (B-3)

M-i

Therefore

W 2
bc "Wi - > 0 (B-4)

W3

In addition, there follows

M w W2 < W-. (B-5)
C C W3-I.W3
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APPENDIX C - TRACE RELATIONS FOR EIGENVALUES

Suppose MxM matrix P - [p mnI has eigenvalues {>m,) 1 < m < M.
Let A be the diagonal matrix of eigenvalues {X m and let Q be the

normalized modal matrix of eigenvectors of P; see [12; section

1.131. Then we can express matrix P in the form

P Q A QT (C-1)

from which there follows the k-th power

p k Q Ak QT . (C-2)

We now use the trace relation

tr(A B C) - tr(B C A) , (C-3)

to evaluate the trace of p k

M

tr(Pk) - tr(Q Ak QT) - tr(Ak QT Q) tr (Ak) . \ . (C-4)
rn-imul

That is, the sum of the k-th powers of eigenvalues {Xm) can be

obtained from the trace of matrix pk, without ever having to

evaluate the eigenvalues at all. In particular,

ZXm - tr(P) Z rmm ( 1C-5)
m.1 m-1

M

X trp)-Z 0 n gri (C-6)m " mn °nm'

m-i m,n-l
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X - tr(P) z mn 9nk Okm -(C-i)
M-1 m,n,k-l

In order to compute the sums of the three lowest powers of the

eigenvalues of matrix P, we simply have to compute the three sums

on the elements of matrix P, as indicated in (C-5) through (C-7).

In fact, there is no need to compute matrices P2 or P3 either.

Thus, a seemingly difficult numerical chore is replaced by

straightforward simple summations of products of matrix elements,

yielding a very significant savings in complexity and time.
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AFPENDIX D - INVERSION OF EQUATON (60)

For notational effic~encl, we suppress all the g subscripts

in (60), let Yk - x(k)/(k-1)1, and set p - M w. The nonlinear

equations then take the form

yl - b + p , y2 - 2 b c + p w,

Y3 - 3 b c 2 + p w 2 Y4 - 4 b c 3 + pw . (D-l)

We solve the first two equations for p and b, getting

Y2 -2 yl oc Yl w - Y2yp--y -- b y- w-y (D-2)
p w 2c b w -2c

These quantities are now substituted in the third ani fourth

equations in (D-l), resulting in the highly nonlinear pair of

coupled equations Zor c and w:

c2 3 (Y, w - y2) + c 2 (Y3 - Yl w2 ) + w (Y 2 w - y 3 ) " 0 , (D-3)

4 (Y1 w - y 2 ) + c 2 (Y 4 - yl w3 ) w (Y 2 w2 - y 4 ) - 0 . (D-4)

The procedure we have adopted for solving these latter two

equations is to start with an initial guess for w as in (57),

namely

W ULA)Z j4 (D-5)x-•3)/2 Y3

then solve quadratic (D-3) for c; substitute this result into

(D-4) and compute the left-hand side; now vary w until the

left-hand side equals zero. Repeat these operations until c and w

stabilize. Equation (D-2) c&n now be used to get final valaes of

p and b. This i6 the numerical procedure used in the main text.
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APPENDIX E - TERMINATION OF INFINITE PRODUCT

If we terminate the infinite product for the characteristic

functions in (66) or (69) at limit value m - L (ý N), then the

neglected remainder product in the denominator is

- 11(1 -it (1-r) re' mL-~ ~ +OrL.E1

m-L+1

This relation enables a choice of L to control the neglected

remainder. For example, t - 200, L - 220, r - .9 leads to

2Rem - 1 - il.7E-8 - 1.4E-16. Thus, the L2 term and above can be

safely ignored. One final product in the denominator of (66), by

the factor 1 - iUrL, will account for Rem and suffice for

complete accuracy, up to computer round-off error in the

characteristic function evaluation. For larger values of r, it

is necessary to increase the limit L; for example, ý - 150,

L - 700, r - .96915298 yields Rem - 1 - i4.5E-8 - 1E-15.

If we terminate the infinite product for the characteristic

function in (77) at limit value j - L (> J-1), the neglected

remainder product in the denominator is

Rem - [T7B 1 - i -- r ( - L+)B (E2)T- j"-i - i9 . (E-2

.J-L+I

This is substantially the same as (E-1), where terms of the order

of r 2L have been neglected.
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